Roots of Alexander polynomials of random positive 3-braids

Nathan Dunfield (University of Illinois)

joint with Giulio Tiozzo

Based on: arXiv:2402.06771

Slides at: https://dunfield.info/slides/banff2024.pdf

3-strand braid group: $\mathrm{Br}_{3}=\left\langle\sigma_{1}, \sigma_{2} \mid \sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}\right\rangle$

$$
w=\sigma_{1} \sigma_{2} \sigma_{1}^{-2} \sigma_{2} \sigma_{1}^{2} \sigma_{2}^{-1}:
$$

Braid closure: \widehat{w}

Alexander polynomial in $\mathbb{Z}\left[t^{ \pm 1}\right]$

$$
\Delta_{\widehat{w}}(t)=t^{4}-2 t^{3}+3 t^{2}-2 t+1
$$

Dehornoy (2015): roots of $\Delta_{\widehat{w}}$ for positive $w \in \mathrm{Br}_{3}$ are highly structured.

Comparison to roots of $\Delta_{\widehat{w}}$ for a random braid in $\left\{\sigma_{1}, \sigma_{1}^{-1}, \sigma_{2}, \sigma_{2}^{-1}\right\}$.

Roots of $\Delta_{\widehat{w}}$ for 2,500 positive braids with mean $\# w \approx 500$ and std. dev. 170.
 w chosen randomly with σ_{1} and σ_{2} having probability $1 / 2$
1.2 million roots shown

Distribution of roots of $\Delta_{\widehat{w}}$ on the top half of the circle.

For $w \in \operatorname{Br}_{3}$ let v_{w} be the prob. measure on \mathbb{C} unif. supported on the roots of $\Delta_{\widehat{w}}$. Generate a random walk $w_{n}:=g_{1} g_{2} \cdots g_{n}$ by picking $\left(g_{i}\right)_{i \in \mathbb{N}} \in\left\{\sigma_{1}, \sigma_{2}\right\}^{\mathbb{N}}$ with respect to the uniform measure.

For $w \in \operatorname{Br}_{3}$ let v_{w} be the prob. measure on \mathbb{C} unif. supported on the roots of $\Delta_{\widehat{w}}$.
Generate a random walk $w_{n}:=g_{1} g_{2} \cdots g_{n}$ by picking $\left(g_{i}\right)_{i \in \mathbb{N}} \in\left\{\sigma_{1}, \sigma_{2}\right\}^{\mathbb{N}}$ with respect to the uniform measure.

Conj. There exists a compactly supported measure v_{∞} on \mathbb{C} such that for a.e. w_{n} one has $v_{w_{n}} \rightarrow v_{\infty}$ weakly. Moreover, v_{∞} has the following properties:

Burau rep $B_{t}: \mathrm{Br}_{3} \rightarrow \mathrm{GL}_{2} \mathbb{Z}\left[t^{ \pm 1}\right]$ defined by $\sigma_{1} \mapsto\left(\begin{array}{cc}-t & 1 \\ 0 & 1\end{array}\right)$ and $\sigma_{2} \mapsto\left(\begin{array}{cc}1 & 0 \\ t & -t\end{array}\right)$ $\Delta_{\widehat{w}}(t)=\operatorname{det}\left(B_{t}(w)-1\right) /\left(t^{2}+t+1\right)$
For $\overline{\mathbb{D}}=\{|z| \leq 1\}$, take $\rho_{w}: \overline{\mathbb{D}} \rightarrow \mathbb{R} \geq 0$ to be the max abs. val. of an eig. val. of $B_{t}(w)$. Key: $\rho_{w}=1$ at any root of $\Delta_{\widehat{w}}$ in $\overline{\mathbb{D}}$.

Burau rep $B_{t}: \mathrm{Br}_{3} \rightarrow \mathrm{GL}_{2} \mathbb{Z}\left[t^{ \pm 1}\right]$ defined by $\sigma_{1} \mapsto\left(\begin{array}{cc}-t & 1 \\ 0 & 1\end{array}\right)$ and $\sigma_{2} \mapsto\left(\begin{array}{cc}1 & 0 \\ t & -t\end{array}\right)$ $\Delta_{\widehat{w}}(t)=\operatorname{det}\left(B_{t}(w)-1\right) /\left(t^{2}+t+1\right)$
For $\overline{\mathbb{D}}=\{|z| \leq 1\}$, take $\rho_{w}: \overline{\mathbb{D}} \rightarrow \mathbb{R} \geq 0$ to be the max abs. val. of an eig. val. of $B_{t}(w)$. Key: $\rho_{w}=1$ at any root of $\Delta_{\hat{w}}$ in $\overline{\mathbb{D}}$. Set $R_{w}=\left\{z \in \overline{\mathbb{D}} \mid \rho_{w}(z)=1\right\}$.

Thm. For any positive $w \neq \sigma_{i}^{k}$, set R_{w} contains the $\operatorname{arc} A_{R}:=\left\{t=e^{i \theta}| | \theta \mid<2 \pi / 3\right\}$, is disjoint from the set \mathscr{T}, and meets $(-1,1)$ in a single point.

Thm. For any positive $w \neq \sigma_{i}^{k}$, at least $\frac{2}{3}\left(\operatorname{deg}\left(\Delta_{\widehat{w}}\right)-1\right)$ of the roots of $\Delta_{\widehat{w}}$ occur on this arc.

Thm. For any positive $w \neq \sigma_{i}^{k}$, set R_{w} contains the $\operatorname{arc} A_{R}:=\left\{t=e^{i \theta}| | \theta \mid<2 \pi / 3\right\}$, is disjoint from the set \mathscr{T}, and meets $(-1,1)$ in a single point.

Thm. For any positive $w \neq \sigma_{i}^{k}$, at least $\frac{2}{3}\left(\operatorname{deg}\left(\Delta_{\widehat{w}}\right)-1\right)$ of the roots of $\Delta_{\widehat{w}}$ occur on this arc.

Thm. Set $A_{L}:=\left\{t=e^{i \theta}| | \theta-\pi \mid<\pi / 3\right\}$. For a.e. random walk w_{n}, asymptotically the portion of roots on A_{L} is $\geq(7-3 \sqrt{5}) / 12 \approx 2.4 \%$.

Thm. The signature $\sigma_{\widehat{w}}(-1)$ obeys a central limit theorem with positive drift $(5-\sqrt{5}) / 4$.

Lyapunov exponent $\lambda(t):=\lim _{n \rightarrow \infty} \frac{1}{n} \int_{\mathrm{Br}_{3}} \log \left\|B_{t}(g)\right\| d \mu^{* n}(g)$ where μ is the uniform measure on $\left\{\sigma_{1}, \sigma_{2}\right\}$.

$$
\chi(t):=\max \{\lambda(t), \log |t|, 0\}
$$

Bifurcation measure: $v_{\text {bif }}:=\Delta \chi$
Conj. $v_{w_{n}} \rightarrow v_{\text {bif }}$
Motivated by Deroin-Dujardin.
We have some partial results towards this conjecture.

Open questions:

Prove the conjecture!

n-strand braids

Non-positive braids?

Ribbon concordances and slice obstructions: experiments and examples Forthcoming work with Sherry Gong

- 352 million knots with ≤ 19 crossings [Burton]
- 1.6 million are slice
- 350.4 million are not slice
- < 13,000 unknown (0.004\%)

