Roots of Alexander polynomials of random positive 3-braids

Nathan Dunfield (University of Illinois)

joint with Giulio Tiozzo

Based on: arXiv:2402.06771

Slides at: https://dunfield.info/slides/banff2024.pdf

3-strand braid group: Br₃ = $\langle \sigma_1, \sigma_2 | \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \rangle$

$$w = \sigma_1 \sigma_2 \sigma_1^{-2} \sigma_2 \sigma_1^2 \sigma_2^{-1}:$$

Braid closure: \hat{w}

Alexander polynomial in $\mathbb{Z}[t^{\pm 1}]$ $\Delta_{\widehat{W}}(t) = t^4 - 2t^3 + 3t^2 - 2t + 1$ Dehornoy (2015): roots of $\Delta_{\widehat{W}}$ for positive $w \in Br_3$ are highly structured.

Comparison to roots of $\Delta_{\widehat{w}}$ for a random braid in $\{\sigma_1, \sigma_1^{-1}, \sigma_2, \sigma_2^{-1}\}$.

Roots of $\Delta_{\hat{w}}$ for 2,500 positive braids with mean $\#w \approx 500$ and std. dev. 170.

w chosen randomly with σ_1 and σ_2 having probability 1/2

1.2 million roots shown

Distribution of roots of $\Delta_{\widehat{W}}$ on the top half of the circle.

For $w \in Br_3$ let v_w be the prob. measure on \mathbb{C} unif. supported on the roots of $\Delta_{\widehat{w}}$.

Generate a random walk $w_n := g_1 g_2 \cdots g_n$ by picking $(g_i)_{i \in \mathbb{N}} \in \{\sigma_1, \sigma_2\}^{\mathbb{N}}$ with respect to the uniform measure.

For $w \in Br_3$ let v_w be the prob. measure on \mathbb{C} unif. supported on the roots of $\Delta_{\widehat{w}}$.

Generate a random walk $w_n := g_1 g_2 \cdots g_n$ by picking $(g_i)_{i \in \mathbb{N}} \in \{\sigma_1, \sigma_2\}^{\mathbb{N}}$ with respect to the uniform measure.

Conj. There exists a compactly supported measure v_{∞} on \mathbb{C} such that for a.e. w_n one has $v_{w_n} \rightarrow v_{\infty}$ weakly. Moreover, v_{∞} has the following properties:

Burau rep B_t : Br₃ \rightarrow GL₂ $\mathbb{Z}[t^{\pm 1}]$ defined by $\sigma_1 \mapsto \begin{pmatrix} -t & 1 \\ 0 & 1 \end{pmatrix}$ and $\sigma_2 \mapsto \begin{pmatrix} 1 & 0 \\ t & -t \end{pmatrix}$ $\Delta_{\widehat{w}}(t) = \det(B_t(w) - 1) / (t^2 + t + 1)$ For $\overline{\mathbb{D}} = \{ |z| \le 1 \}$, take $\rho_w : \overline{\mathbb{D}} \rightarrow \mathbb{R}_{\ge 0}$ to be the max abs. val. of an eig. val. of $B_t(w)$. Key: $\rho_w = 1$ at any root of $\Delta_{\widehat{w}}$ in $\overline{\mathbb{D}}$. Burau rep B_t : $\operatorname{Br}_3 \to \operatorname{GL}_2 \mathbb{Z}[t^{\pm 1}]$ defined by $\sigma_1 \mapsto \begin{pmatrix} -t & 1 \\ 0 & 1 \end{pmatrix}$ and $\sigma_2 \mapsto \begin{pmatrix} 1 & 0 \\ t & -t \end{pmatrix}$ $\Delta_{\widehat{w}}(t) = \operatorname{det}(B_t(w) - 1) / (t^2 + t + 1)$ For $\overline{\mathbb{D}} = \{ |z| \le 1 \}$, take $\rho_w : \overline{\mathbb{D}} \to \mathbb{R}_{\ge 0}$ to be the max abs. val. of an eig. val. of $B_t(w)$. Key: $\rho_w = 1$ at any root of $\Delta_{\widehat{w}}$ in $\overline{\mathbb{D}}$. Set $R_w = \{z \in \overline{\mathbb{D}} \mid \rho_w(z) = 1\}$.

Thm. For any positive $w \neq \sigma_i^k$, set R_w contains the arc $A_R := \{t = e^{i\theta} \mid |\theta| < 2\pi/3\}$, is disjoint from the set \mathcal{T} , and meets (-1, 1) in a single point.

Thm. For any positive $w \neq \sigma_i^k$, at least $\frac{2}{3} \left(\deg(\Delta_{\widehat{w}}) - 1 \right)$ of the roots of $\Delta_{\widehat{w}}$ occur on this arc.

Thm. For any positive $w \neq \sigma_i^k$, set R_w contains the arc $A_R := \{t = e^{i\theta} \mid |\theta| < 2\pi/3\}$, is disjoint from the set \mathcal{T} , and meets (-1, 1) in a single point.

Thm. For any positive $w \neq \sigma_i^k$, at least $\frac{2}{3} \left(\deg(\Delta_{\widehat{w}}) - 1 \right)$ of the roots of $\Delta_{\widehat{w}}$ occur on this arc.

Thm. Set $A_L := \{t = e^{i\theta} \mid |\theta - \pi| < \pi/3\}$. For a.e. random walk w_n , asymptotically the portion of roots on A_L is $\ge (7 - 3\sqrt{5})/12 \approx 2.4\%$.

Thm. The signature $\sigma_{\widehat{w}}(-1)$ obeys a central limit theorem with positive drift $(5-\sqrt{5})/4$.

Lyapunov exponent $\lambda(t) := \lim_{n \to \infty} \frac{1}{n} \int_{Br_3} \log \|B_t(g)\| d\mu^{*n}(g)$ where μ is the uniform measure on $\{\sigma_1, \sigma_2\}$.

$$\chi(t) := \max \left\{ \lambda(t), \log |t|, 0 \right\}.$$

Bifurcation measure: $v_{bif} := \Delta \chi$

Conj.
$$v_{W_n} \rightarrow v_{bif}$$

Motivated by Deroin-Dujardin.

We have some partial results towards this conjecture.

Open questions:

Prove the conjecture!

n-strand braids

Non-positive braids?

Ribbon concordances and slice obstructions: experiments and examples

Forthcoming work with Sherry Gong

- S52 million knots with ≤ 19 crossings [Burton]
- 1.6 million are slice
- 350.4 million are not slice
- < 13,000 unknown (0.004%)</p>